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Abstract 
Histological grading of pathological images is used to 

determine the level of malignancy of cancerous tissues. This 
task is done by pathologists. Pathologists are inconsistent in 
these judgments from day to day and from person to person. 
So the grades are very subjective and furthermore in some 
cases this is a difficult and time-consuming task. This paper 
presents a new method for automatic grading of pathological 
images of prostate based on Gleason grading system. 
According to Gleason grading system, each cancerous 
specimen is assigned one of five grades. In our method the 
decision is based on features extracted from the multiwavelet 
transform of images. Energy and entropy features are 
extracted from submatrices obtained in decomposition. Then 
a k-NN classifier is used to classify each image. We also 
used features extracted by wavelet packet and second order 
moments to compare various methods. Experimental results 
show the superiority of multiwavelet transform compared to 
other techniques. For multiwavelets, critically sampled 
preprocessing outperforms repeated row preprocessing and 
has less sensitivity to noise. We also found that the first level 
of decomposition is very sensitive to noise and thus should 
not be used for feature extraction. 
 
1. Introduction 

Cancer is the second killer of American people, and only 
cardiovascular diseases exacts a higher toll [1]. Histological 
grading is a very important task in the framework of prostate 
cancer prognosis, since it is used for treatment planning. If 
infection of cancer disease was not rejected by non-invasive 
diagnostic techniques like MRI, CT scan, and ultrasound, 
then biopsy specimens of the tissue is tested. For prostate, 
the tissue is usually stained by H&E (Hematoxyline and 
Eosine) technique. Then the histological grading is done by 
viewing the microscopic image of the tissue. This task is 
done by pathologists. Manual grading is very subjective due 
to inter- and intra-observer variations. So an automatic and 
repeatable technique is needed for grading. Gleason grading 
system is the most common method for histological grading 
of prostate [2]. The goal of this paper is to automate  the 
Gleason grading. 

For data classification, the decision is done based on a set 
of features. Since most pattern recognition tasks are first 
done by humans and automated later, the most fruitful 
source of features has been those used by the people to 
classify the objects. Automating the classification of objects 
using the same features as those used by people can be a 
difficult task, but fortunately the features used by machines 
need not be precisely those used by humans. Sometimes 

features that would be impossible or difficult for humans to 
estimate are useful in automated systems [3]. In this 
research, we used energy and entropy features calculated 
from multiwavelet coefficients of the image. Then a k-NN 
classifier was used to classify each image to appropriate 
grade. The leaving-one-out technique was used for error rate 
estimation. We also used features extracted by wavelet 
packet and second order moments to compare various 
methods. Experimental results show the superiority of 
multiwavelet transform compared to other techniques. 

 
2. Gleason Grading System 

There is a great need for methods to quantify the probable 
clinical aggressiveness of a given neoplasm, and further to 
express its apparent extent and spread in patients [1]. 
Histological grading is one of these methods. The grading of 
a cancer attempts to establish some estimate of its 
aggressiveness or level of malignancy. In Gleason grading 
system, the cancer may be classified as grade 1, 2, 3, 4 or 5 
with increasing or lack of differentiation. 

Gleason has provided a conceptual diagram in Figure 1 to 
show the continuum of deteriorating cancer cell architecture, 
and the four dividing lines along this continuum which he 
discovered are able to identify patients with significantly 
different prognosis. The Gleason system is based exclusively 
on the architectural pattern of the glands of the prostate 
tumor. It evaluates how effectively the cells of any particular 
cancer are able to structure themselves into glands 
resembling those of the normal prostate [2]. The ability of a 
tumor to mimic normal gland architecture is called its 
differentiation, and experience has shown that a tumor 
whose  structure  is  nearly  normal  (well differentiated) will 

 

 
 Figure 1. Gleason grading diagram. 
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probably have a biological behavior relatively close to 
normal (that is not very aggressively malignant). Gleason 
grading from very well differentiated (grade 1) to very 
poorly differentiated (grade 5) is usually done by viewing 
the low magnification microscopic image of the cancer. 

If there exits two patterns in the specimen, a combined 
score is calculated which is the sum of two grades. So 
combined score varies from 2 to 10. Figure 2 shows two 
tissue samples of grades 2 and 5. For grade 2, the glands are 
well-differentiated with respect to grade 5. Figure 2(b) 
shows only a sea of black nuclei with no pattern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The grade of a prostate cancer specimen is very valuable to 
doctors in understanding how a particular case of prostate 
cancer can be treated. An accurate Gleason score can help 
one decide which treatment may be most beneficial. 

In general, the time for which a patient is likely to survive 
following diagnosis of prostate cancer is related to the 
Gleason score. The lower the Gleason score, the better the 
patient is likely to do. Patients with score of 2 to 4 almost 
never develop aggressive disease, whereas most patients 
with a score of 8 to 10 die of prostatic carcinoma [2]. 
 
3. Feature Extraction and Classification 

Wavelet decomposition has been successful in image 
classification and segmentation [4],[5]. The newly developed 
multiwavelet transform has been more successful than scalar 
wavelet in image denoising [6]. In this research, we used the 
coefficients of multiwavelet transform for feature extraction. 
This transform is explained next. 

 
3.1. Multiwavelet  

While in scalar wavelet transform there is only one scaling 
function, in multiwavelet transform we can have more than 
one scaling function. Multiwavelets have some advantages 
compared to scalar ones. For example, features such as short 
support, orthogonality, symmetry and vanishing moments 
are known to be important in signal processing. A scalar 
wavelet cannot possess all of these properties at the same 
time. On the other hand, a multiwavelet system can have all 
of them simultaneously. This suggests that multiwavelets 
may perform better in various applications [6].  

In multiwavelet analysis the multiscaling function 
( ) ( ) ( )[ ]T

1 t,...,tt rφφ=Φ  satisfies a two-scale equation: 

( ) ( )∑ −=
k

k ktHt 22 ΦΦ                    (1) 

where kH  is an rr ×  matrix of lowpass filter coefficients. 
Like scalar wavelet function, multiwavelet function 

( ) ( ) ( )[ ]T
r ttt ψψ ,...,1=Ψ  must satisfy the two-scale 

wavelet equation: 

( ) ( )∑ −=
k

k ktGt 22 ΦΨ                    (2) 

where kG  is an rr ×  matrix of highpass filter coefficients.  
Corresponding to each multiwavelet system is a matrix-

valued multirate filterbank, or multifilter shown in Figure 3. 
The lowpass filter and highpass filter consist of coefficients 
corresponding to the dilation equation (1) and wavelet 
equation (2) and these coefficients are matrices, so during 
the convolution step they must multiply vectors (instead of 
scalars). This means that multifilter banks need input rows.  
Thus, some methods for vectorization of scalar input should 
be used. Methods for preprocessing have been developed 
[7],[8]. In this research, we used repeated row and critically 
sampled approaches. 

 
 
 
 
 
 
 
 
 
 
 
3.2. Multiwavelet Transform of 2-D signals 

For calculating multiwavelet transform of 2-D signals, we 
can use tensor product method, i.e., performing the 1-D 
algorithm in each dimension separately [6]. Figure 4 shows 
the submatrices resulted from 2-D multiwavelet decomposi-
tion. The result after one decomposition can be realized as 
the following matrix (Figure 4(a)): 

 
L1L1 L2L1 H1L1 H2L1 

L1L2 L2L2 H1L2 H2L2 

L1H1 L2H1 H1H1 H2H1 

L1H2 L2H2 H1H2 H2H2 

 
Here the subband labeled 21HL  corresponds to data from 
the second channel highpass filter in the horizontal direction 
and the first channel lowpass filter in the vertical direction. 
The next step of decomposition will decompose the 
following “low-lowpass” submatrix, in a similar manner: 
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Figure 3. Multirate filterbank, showing 2 
levels of decomposition. 

(a)                                                     (b) 

Figure 2. Two samples of prostate tissue. (a) Grade 2. 
(b) Grade 5.



 

 

 
 
 
 
 
 
 
 
 
 
This is shown in Figure 4(b). The number of submatrices 
will be equal to 4+12l where l is the number of levels of 
decomposition. 
 
3.3 Feature Extraction 

The features used for classification are calculated from 
energy and entropy of the multiwavelet coefficients. As 
indicated in Section 3.2, the result of decomposition is a 
number of submatrices. From each submatrix ][ ijx , the 
following features are calculated: 
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where ∑ ∑=
i j ijxnorm 22 and N is the dimension of each 

submatrix.  
 

3.4. Classification 
Having vector of features of data set of images, a k-nearest 

neighbors (k-NN) classifier using Euclidean distance was 
used for classification. Because of limit to the size of the 
data set, we used the leaving-one-out technique to estimate 
error rate. Before classification, we did some normalization 
on the features. Recall that if one of the features has a very 
wide range of possible values compared to the other features, 
it will be a very large effect on the total dissimilarity, and the 
decisions will be based primarily upon this single feature. To 
overcome this, it is necessary to apply scale factors to the 
features before computing the distances [3]. In this research, 
we normalized each feature to have mean of zero and 
standard deviation of one for the entire data set. Further-
more, because some features may be more important than 
others, we used weight for each normalized feature. To 
calculate the best weight vector for the feature vector, we 
minimized the error rate estimated by the leaving-one-out 
technique. 

Two different criteria were assumed to evaluate the error. 
The first criterion assumed the result of each classification 
true, if in k neighbors, more than k/2 images were of the 
same class. We used this criterion in error minimization 
(Table 1). During error minimization this criterion leads to 
more separation of classes in feature space. The second 
criterion assumed the classification result true, if most of the 
k neighbors were of the same class. The results in Table 2 
are based on this criterion. It is obvious that the first criterion 

leads to more error (Because some images are misclassified). 
Furthermore as we will see in Table 1, this criterion leads to 
higher error for even k’s. For example for k=2 and k=3 this 
criterion means that for true classification of an image of 
class c, at least 2 of its k neighbors should be of class c. So, 
this leads to more error for k=2 compared to k=3. 

 
3.5 Noise Effect 
We also used a set of images as a test set and evaluate the 

noise effect by adding Gaussian noise with SNR=10 to 
images before classification, where SNR is the ratio of signal 
energy to noise energy. We used the second criterion in 
section 3.5 for error evaluation. 

 
4. Experimental Results and Conclusions 

In our experiments, 100 graded prostate tissue sample 
images were processed by the proposed approach. These 
images were of grades 2 to 5 and of magnification 100. 
Grade 1 was excluded because it is a very rare pattern and 
should be avoided.  

We first made each image black and white, then 
decomposed it to submatrices. A set of features using (3) and 
(4) was calculated, and then normalized. First and second 
levels of decomposition were tested using GHM [9], CL [10] 
and SA4 [11] multiwavelets. The k-NN classifier was tested 
for k=1,2,…,5. Furthermore, for comparison, other features 
using wavelet packet decomposition and second order 
moments as defined in [12] were calculated. We used 
Daubechies wavelet D6 and D20 for wavelet packet that had 
better results compared to other Daubechies wavelets. Table 
1 shows the estimated errors using leaving-one-out techni-
que. In this table, r.r. and c.s. show repeated row and 
critically sampled preprocessing respectively. The results 
show the superiority of multiwavelet transform for grading, 
with respect to other techniques. 

We also divided our set of images randomly into two 50 
images groups, and used one set as reference set and the 
other as test set. Then Guassian noise with mean zero and 
SNR=10, was added to test images. The results of classifi-
cation of noisy data are in Table 2. These results are the 
average of error for 10 realization of Guassian noise. The 
results are rounded. 

 We can see that the first level of decomposition is very 
sensitive to noise. So we should ignore this level. This helps 
to noise reduction. Also for second level, critically sampled 
preprocessing has lower sensitivity to noise compared to 
repeated row preprocessing. This is due to compact form that 
critically sampled technique can produce. This leads to 
higher energy and so higher SNR at low resolutions and so 
less sensitivity to noise. 

For next researches, better classification can be reached 
using the combination of second and higher levels of decom-
positions. But these levels may have common information. 
So we should select best features for classification (One of 
the drawbacks of multiwavelets in feature extraction is the 
large number of produced features). 

 
 

(a)                                 (b) 
Figure 4. Result of 2-D multiwavelet decomposition. 

(a) One level of decomposition. (b) Two levels of 
decompostion. 



 

 

Table 1. Percentage of error rates using multiwavelet, 
wavelet packet and second order moments. 

k 1 2 3 4 5 

r.r. 28 35 21 27 26 
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 c.s. 6 15 8 17 14 
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14 30 16 34 25 

Wavelet 
Packet D20 

13 28 17 34 28 

2nd order 
Moments 19 38 27 39 37 

 
 
 

Table 2. Percentage of error rates for noisy data. 

 
k 1 2 3 4 5 

r.r. 42 48 43 41 39 
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c.s. 38 45 45 45 49 

r.r. 38 41 44 43 39 
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